Optical images of polyethylene glycol scaffolds expanding in response to stretching.
Image credit: UC San Diego / Shaochen ChenCatherine Hockmuth of UC San Diego reports that, a new biomaterial designed for repairing damaged human tissue doesn't wrinkle up when it is stretched. The invention from nanoengineers at the University of California, San Diego marks a significant breakthrough in tissue engineering because it more closely mimics the properties of native human tissue.
Shaochen Chen, professor in the Department of NanoEngineering at the UC San Diego Jacobs School of Engineering, hopes future tissue patches, which are used to repair damaged heart walls, blood vessels and skin, for example, will be more compatible with native human tissue than the patches available today.
This biofabrication technique uses light, precisely controlled mirrors and a computer projection system -- shined on a solution of new cells and polymers -- to build three-dimensional scaffolds with well-defined patterns of any shape for tissue engineering.
Shape turned out to be essential to the new material's mechanical property. While most engineered tissue is layered in scaffolds that take the shape of circular or square holes, Chen's team created two new shapes called "reentrant honeycomb" and "cut missing rib." Both shapes exhibit the property of negative Poisson's ratio (i.e. not wrinkling when stretched) and maintain this property whether the tissue patch has one or multiple layers.
No comments:
Post a Comment